演讲 · 嘉宾
高雪

美国莱斯大学

高雪博士现任美国莱斯大学(Rice University)化学与生物分子工程学院、生物工程学院和生命科学学院Ted N. Law 助理教授。她2013-2017年间在哈佛大学化学与化学生物学系David R. Liu教授课题组从事博士后研究,发展了体内递送CRISPR/Cas9基因编辑工具的方法用于听力疾病的基因治疗。高博士于2013年在加州大学洛杉矶分校(UCLA)化学与生物分子工程系获得博士学位,并获得了Harry M. Showman的荣誉博士毕业奖。 她在UCLA唐毅教授实验室从事博士研究期间主要关注基于真菌的天然产物生物合成系统的酶反应机理,并进而设计酶作为生物催化剂用于重要药物分子的制备。高博士本科毕业于天津大学化学工程学院师从元英进教授。高博士在Nature, Nature Chemical Biology, JACS, Cell Chemical biology等期刊均发表了第一作者文章。现在的研究方向包括利用合成生物学技术从微生物中筛选和改造生物分子作为药物前体。

演讲报告题目摘要:

Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents
Although genetic factors contribute to almost half of all cases of deafness, treatment options for genetic deafness are limited. We developed a genome-editing approach to target a dominantly inherited form of genetic deafness. Here we show that cationic lipid-mediated in vivo delivery of Cas9–guide RNA complexes can ameliorate hearing loss in a mouse model of human genetic deafness. We designed and validated, both in vitro and in primary fibroblasts, genome editing agents that preferentially disrupt the dominant deafness-associated allele in the Tmc1 (transmembrane channel-like gene family 1) Beethoven (Bth) mouse model, even though the mutant Tmc1Bth allele differs from the wild-type allele at only a single base pair. Injection of Cas9–guide RNA–lipid complexes targeting the Tmc1Bth allele into the cochlea of neonatal Tmc1Bth/+ mice substantially reduced progressive hearing loss. We observed higher hair cell survival rates and lower auditory brainstem response thresholds in injected ears than in uninjected ears or ears injected with control complexes that targeted an unrelated gene. Enhanced acoustic startle responses were observed among injected compared to uninjected Tmc1Bth/+ mice. These findings suggest that protein–RNA complex delivery of target gene-disrupting agents in vivo is a potential strategy for the treatment of some types of autosomal-dominant hearing loss.

研究方向:

基因编辑,蛋白改造和进化,酶化学,天然产物生物合成

学习和工作经历:

Professional Appointment

Ted N. Law Assistant Professor, Rice University

2017 to Present

Department of Chemical and Biomolecular Engineering

Houston, TX, USA

Postdoctoral Fellow, Harvard University

2013-2017

Department of Chemistry and Chemical Biology

Boston, MA, USA

Adviser: David R. Liu


Education

Ph.D. Chemical and Biomolecular Engineering, UC Los Angeles

2007 to 2013

Advisor: Yi Tang

Los Angeles, CA, USA

Thesis title: Investigation, Characterization and Engineering of Fungal Natural Product Biosynthesis

 

M.S. Chemical Engineering, Tianjin University

2005-2007

Advisor: Yingjin Yuan

Tianjin, China

B.S. Chemical Engineering, Tianjin University

2001-2005

近期发表论文:
  1. Hu J.H., Miller S.M., Geurts M.H., Tang W., Chen L., Sun N., Zeina C.M., Gao, X., Rees H.A., Lin Z., Liu D.R.,
     “Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.” Nature, 2018, doi: 10.1038/nature26155.
  2. Gao, X.†, Tao Y.†, Lamas V., Huang M., Yeh W.H., Pan B., Hu Y.J., Hu J.H., Thompson D.B., Shu Y., Li Y., Wang H., Yang S., Xu Q., Polley D.B., Liberman M.C., Kong W.J., Holt J.R., Chen Z.Y., Liu D.R., “Treatment of autosomal progressive hearing loss by in vivo delivery of genome editing agents.” Nature, 2018,553, 217-221.
  3. Jiménez-Osés, G.†, Osuna S.†, Gao, X., Sawaya, M.R.; Gilson, L.; Collier, S.J.; Huisman, G.W., Yeates, T.O., Tang, Y., Houk, K.N., “The Role of Distant Mutations and Allosteric Regulation on LovD Active Site Dynamics.”Nat. Chem. Biol., 2014, (6):431-6.  
  4. Gao, X., Jiang, W, Jiménez-Osés, G, Choi S. M., Houk K.N., Yi Tang, Walsh C.T., “An Iterative, Bimodular Nonribosomal Peptide Synthetase that Converts Anthranilate and Tryptophan into Tetracyclic Asperlicins.” Chem. Biol., 2013, 20, 870-878.
  5. Gao, X., Haynes, S.W., Ames, B.D., Wang, P., Vien, L.P., Walsh, C.T., Tang, Y. “Cyclization of fungal nonribosomal peptides by a terminal condensation-Like domain.” Nat. Chem. Biol., 2012, 8, 823-830.
  6. Gao, X., Chooi, Y., Ames, B.D., Wang, P., Walsh, C. T., Tang, Y. “Fungal quinazoline alkaloid biosynthesis: Genetic and biochemical investigation of the tryptoquialanine pathway in Penicillium aethiopicum.” J. Am. Chem. Soc., 2011, 133, 2729-2741.
    Highlighted in Nat. Chem. Biol., “Biosynthesis: Alkaloids under construction”, 2011, 7, 190–191
  7. Gao, X., Xie, X.†, Pashkov, I., Sawaya, R.M., Laidmen, J., Zhang, W., Cacho, R., Yeates, T.O., Tang, Y. “Directed evolution and structural characterization of a simvastatin synthase.” Chem. Biol., 2009, 16, 1064-1074.
    Won the “2012 Presidential Green Chemistry Challenge Award”
  8. Gao, X., Wang, P.†, Tang, Y. “Engineered polyketides biosynthesis and biocatalysis in Escherichia coli.” Appl. Microbiol. Biotechnol., 2010, 88, 1233-1242.
  9. Wang, P.†, Gao, X., Tang, Y. “Redox enzymes to generate complexity of natural products.” Curr. Opin. Chem. Biol., 2012, 16, 362-369.
  10. Haynes, S.W., Gao, X., Tang, Y., Walsh, C.T., “Complexity Generation in Fungal Peptidyl Alkaloid Biosynthesis: a Two Enzyme Pathway to the Hexacyclic MDR Export Pump Inhibitor Ardeemin.” ACS Chem. Biol., 2013, 19, 8(4):741-8.
  11. Haynes, S.W., Gao, X., Tang, Y., Walsh, C.T. “Assembly of asperlicin peptidyl alkaloids from anthranilate and tryptophan: a two-enzyme pathway generates heptacyclic scaffold complexity in asperlicin E.” J. Am. Chem. Soc., 2012, 134, 17444-17447.       
  12. Wang, P., Gao, X., Deng, Z., Tang, Y. “Genetic characterization of enzymes involved in the priming steps of oxytetracycline biosynthesis in Streptomyces rimosus.” Microbiology, 2011, 157, 2401-2409.
  13. Haynes, S.W., Ames, B.D., Gao, X., Tang, Y., Walsh, C.T. “Unraveling terminal C-domain-mediated condensation in fungal biosynthesis of imidazoindolone metabolites.” Biochemistry, 2011, 50, 5668-5679.
  14. Yang, J., Yang, S., Gao, X., Yuan, Y.J. “Integrative investigation of lipidome and signal pathways in human endothelial cells under oxidative stress.” Mol. Biosyst., 2011, 7, 2428-2440.
  15. Ames, B. D., Haynes, S. W., Gao, X., Tang, Y., Walsh, C.T. “Complexity generation in fungal peptidyl alkaloid biosynthesis: oxidation of fumiquinazoline A to the heptacyclic hemiaminal fumiquinazoline C by the flavoenzyme Af12070 from Aspergillus fumigatus.” Biochemistry, 2011, 50, 8392–8406.
  16. Xie, X., Pashkov, I., Gao, X., Guerrero, J., Yeates, T.O., Tang, Y. “Rational improvement of simvastatin synthase solubility in Escherichia coli leads to higher whole-cell biocatalytic activity.” Biotechnol. Bioeng., 2009, 102, 20-28.  
  17. Walsh, C.T., Haynes, S.W., Ames, B.D., Gao, X., Tang, Y. “Short Pathways to Complexity Generation: Fungal Peptidyl Alkaloid Multicyclic Scaffolds from Anthranilate Building Blocks.” ACS Chem. Biol., 2013, 19, 1366-82. 
  18. Wang, P., Kim, W., Pickens, L.B., Gao, X., Tang, Y. “Heterologous expression and manipulation of three tetracycline biosynthetic pathways.” Angew. Chem. Int. Ed. Engl., 2012, 51, 11136–11140.
  19. Wang, P., Bashiri, G., Sawaya, M.R., Gao, X., Yeates T.O., Tang, Y. “Uncovering the Enzymatic Basis of the Final Steps in Oxytetracycline Biosynthesis.” J. Am. Chem. Soc., 2013, 135, 7138-7141. 
  20. Wang, M., Zuris, J. A., Meng, F., Rees, H., Sun, S., Deng, P., Han, Y., Gao, X., Pouli, D., Wu, Q., Georgakoudi, I., Liu, D. R., Xu, Q.   “Efficient Delivery of Genome-Editing Proteins using Bioreducible Lipid Nanoparticles.” Proc. Natl. Acad. Sci. USA, 2016, 113(11):2868-73.
    donates equal contribution